Spatial Management in Fisheries

Lessons from Empirical Bioeconomics

Nicholas School of the Environment and Earth Sciences Duke University

Prepared for NMFS/NOAA Spatial Modeling Fisheries Economics Workshop October 22, 2002

Four Key Phrases

- Spatial Closure
- Marine Reserve
- Marine Protected Area (MPA)
- No-take (harvest) Zones

Key Questions

 Are marine reserves a good idea for fisheries management?

If so, under what conditions?

 What are the implications of ignoring fisher behavior?

Biological Justifications

- Rebuild overexploited areas
- Take advantage of dispersal mechanisms (e.g. sink/source patterns)
- Returns to scale in organism size and population density
- Preserve natural life cycle
- Hedge against stock collapse

Economic Skepticism

- Reserves do not necessarily address the fundamental driving force of overexploitation - open access
- Could be more costly than other forms of management
- Whatever happened to equimarginality?

A Realistic Synthesis

Biological arguments throw a wrench into our typical economic modeling efforts (e.g. convex production sets). Predicting the ultimate consequences of reserves requires empirical bioeconomic modeling.

Catch Improvement Conjecture

Marine reserves may generate aggregate harvest increases

Preview of Findings

- Marine reserves are unlikely to increase harvest in the fishery described below
- Most biological modeling of reserves has resulted in overly optimistic predictions about their performance
- The magnitude and spatial distribution of fishing effort before and after reserve formation are key

Empirical Setting Northern California Red Sea Urchin Fishery

- Uni
- Daily diving trips
- Uniform harvest technology
- About 135 owner-operators
- Data combine logbooks and landings tickets (and weather buoy data) from 1988-97
- Marine reserves under consideration

California Sea Urchins: Ideal for Spatial Management?

- The resource is "patchy" has potential for sinks and sources
- Subpopulations connected via larval dispersal, sedentary adults
- Density-dependent reproduction
- Fecundity returns to scale (in organism size)
- CPUE has shown dramatic declines

Structure of the Economic Model: 3 Decision Layers

- Daily discrete participation choice
 - Fish or not

Daily Participation

Structure of the Economic Model: 3 Decision Layers

- Daily discrete participation choice
 - Fish or not
- Location choice
 - If fish, choose a patch or fishing ground

Daily Participation and Location Choice

Empirical Strategy

Repeated Nested Logit for Participation and Location Choice Branches

Participation and Location Results

- Spatial pattern of exploitation is not uniform and is responsive to economic conditions
- Higher revenues and shorter travel distances increase fishing in a patch
- Higher revenues increase participation
- Participation also driven by institutional characteristics and weather conditions

Structure of the Economic Model: 3 Decision Layers

- Daily discrete participation choice
 - Fish or not
- Location choice
 - If fish, choose a patch or fishing ground
- Port switching
 - Within Northern California
 - Between Northern and Southern California

Northern California Ports

Empirical Strategy

SUR share models

Port Switching Results

- Port shares respond to revenue differences across space
- Shares respond sluggishly; there are time lags involved
- The speed of adjustment differs across share models
 - more immediate across ports within northern California
 - slower for switches between northern and southern California

The Sea Urchin Life Cycle

Structure of the Biological Model

- Age- and size-structured metapopulation.
- Fecundity as a function of urchin size is increasing at an increasing rate
- Discrete subpopulations linked through larval dispersal
- The size limit combined with growth and allometric parameters convert number of organisms in each age/size class into patchspecific harvestable biomass

The Bioeconomic Link

- Catch in each patch as a function of fishing effort and harvestable biomass
- Biomass dynamics evolve according to the metapopulation model and catch
- Resource abundance feeds back into expected revenues
- Spatially explicit fishing effort predictions feed back into catch in the next period

Steady-State Size Distribution and Egg Production

Organisms Above the Size Limit

— Egg Production from Size Class

Organisms Below the Size Limit

Steady-State Size Distribution and Egg Production

Two Issues to Explore

Best prediction for performance of a marine reserve

- Implications for ignoring behavioral responses
 - ECON versus NOECON

Marine Reserves and Economic Behavior

	Steady-State Harvest (1,000 pounds)	Steady-State Egg Production (Billions)	Discounted ^a Revenues (\$1000)
th Discrete Choice ECC	DN		
No Closure	830	1,316	17,440
Close Patch 8	752	1,441	15,074
	NOECON Stoody state	Calibration	
th No Economic Model			17 <i>4</i> 00
	NICHECONI Standy atota	('alibration	
No Closure Close Patch 8		434 553	17,400 16,423
No Closure Close Patch 8	829 **	434 553	
No Closure Close Patch 8	829 ** 868	434 553	

^{*} Uses a 5% constant discount rate and assumes \$1 per pound of sea urchin.

^{**} Calibrated steady-state harvest to behavioral model.

^{***} Calibrated approach path catch to actual catch.

Economics of Marine Reserves with Macroeconomic Shocks

		Steady-State N. California Divers	Trips Per Diver Per Year	Partic Rate	Steady-State Harvest E (1,000 pounds)	Steady-State Egg Production (Billions)	Discounted* Revenues (\$1000)
	Discrete Choice (Only					
	No Closure Close Patch	131 8 131	29.9 25.3	13% 11%	830 752	1,316 1,441	17,440 15,074
Р	ort Choice and Dis	screte Choic	е				
	No Closure Close Patch	33 8 36	57.8 47.2	25% 20%	638 576	1,627 1,692	13,400 11,660
Р	ort Choice and Dis	screte Choic	e - 50% Dec	rease in	S. Cal. Reve	nues	
	No Closure Close Patch	83 8 89	37.9 31.2	16% 13%	802 728	1,399 1,495	16,846 14,683
	Discrete Choice (s increase in _l	participati	ion rate		
	No Closure Close Patch	131 8 131	107.1 96.5	46% 41%	883 921	720 879	18,548 17,362
Port Choice and Discrete Choice 75% Decrease in S. Cal. Revenues, double prices, and exogenous increase in participation rate							
	No Closure Close Patch	56 8 68	174.5 143.1	75% 61%	972 952	796 910	20,402 18,865

^{*} Uses a 5% constant discount rate and assumes \$1 per pound of sea urchin.

Conclusions

- Both magnitude and the spatial pattern of fishing effort influence the performance of reserves
- Fixed effort assumption at high levels of exploitation on the approach path drives marine reserve optimism
- Assumption of uniformly distributed effort at high levels of exploitation also drives marine reserve optimism
- A realistic depiction of reserves that includes behavioral responses along the approach path to the steady-state leads to far more pessimism
- It is essential to distinguish between two types of externalities - excess fishing effort and an inefficient spatial allocation

Discussion

As a policy instrument for controlling fishing effort, a marine reserve is an extreme policy.

Appendix A

Statistical Models and Results

Statistical Model of Partic. And Loc.

$$U_{ijt} = v_{ijt} + \varepsilon_{ijt}$$

$$= f(\mathbf{X}_{it}, \mathbf{Z}_{i1t}, \mathbf{Z}_{i2t}, \dots, \mathbf{Z}_{iMt}; \boldsymbol{\theta}) + \varepsilon_{ijt},$$

$$exp\left\{\frac{\mathbf{z}_{it}'\boldsymbol{\gamma}}{(1-\sigma)} + \mathbf{x}_{t}'\boldsymbol{\beta} + (1-\sigma)I\right\}$$

$$Pr(Goto j) = \frac{\sum_{k=0}^{10} \left[exp\left\{\frac{\mathbf{z}_{kt}'\boldsymbol{\gamma}}{(1-\sigma)}\right\} + exp\left\{\frac{\mathbf{z}_{kt}'\boldsymbol{\gamma}}{(1-\sigma)} + \mathbf{x}'\boldsymbol{\beta} + (1-\sigma)I\right\}\right]}$$

$$Pr(Do not go) = 1 - \sum_{k=0}^{10} Pr(Go to k)$$

$$= \frac{1}{1 + exp\left[\mathbf{x}_{t}'\boldsymbol{\beta} + (1-\sigma)I\right]}$$

$$where \quad I = \ln\left[\sum_{k=0}^{10} \exp\left\{\frac{\mathbf{z}_{kt}'\boldsymbol{\gamma}}{(1-\sigma)}\right\}\right]$$

Nested Logit Estimates

7.	T - 4	T	 . a .	pe
	101	OC:	1-5n	ecific
_	100	LUC		CCITIC

	Standard Standard				
Variable	Coefficient	Error	Z - statistic		
Constant	1.06	0.048	22.21		
WP	-0.18	0.005	-34.69		
WS	-0.11	0.003	-36.69		
WH	-0.74	0.011	-70.36		
DWEEK	-0.74	0.012	-60.02		

Location-Specific

Variable	Coefficient	Standard Error	Z - statistic
DISTANCE	-7.27	0.036	-203.72
ER	0.08	0.001	65.17
σ	0.22	0.027	8.34

Log-likelihood	-189,878
Observations	401151
Pseudo R ² (1)	0.21
Pseudo R ² (2)	0.81

 $Pseudo\ R^{2}\ (1)\ is\ based\ on\ the\ log-likelihood\ in\ a\ Conditional\ Logit\ Model\ with\ choice-specific\ constants.$

Pseudo R^2 (2) is based on the log-likelihood of n*ln(1/J), where J = 12 possible choices.

Statistical Model of Port Switching

An SUR Partial Adjustment Approach

$$s_{mt}^* = f^m (\Pi_t, ..., \Pi_t; \theta_{m1}, ..., \theta_{mM}), \quad m = 1, ..., M$$

$$s_{mt} - s_{mt-1} = (1 - \lambda)(s_{mt}^* - s_{mt-1}) + \varepsilon_{mt}, \quad m = 1, ..., M$$

$$s_{mt} = \lambda s_{mt-1} + (1 - \lambda) f^{m} (\Pi_{t}, ..., \Pi_{t}; \theta_{m1}, ..., \theta_{mM}) + \varepsilon_{mt}$$

Estimating Equation

$$S_{mt} = (1 - \lambda)\alpha_m + \lambda S_{mt-1} + (1 - \lambda)\sum_{k=1}^{M} \gamma_{mk} \ln(R_{kt}) + \varepsilon_{mt}$$

Restrictions:
$$\sum_{m=1}^{M} \gamma_{mk} = 0 \qquad \frac{\sum_{m=1}^{M} \alpha_{m}}{(1-\lambda)} = 1$$

South/North Switching OLS Model of Port Shares

Variable	Parameter	Coefficient	t-statistic
Constant	α	0.028061	0.151
Lagged SOC Sha	are λ	0.861212	17.242 **
ln(R _{SOC})	$\gamma_{ m SOC}$	0.056192	1.6678 *
ln(R _{NOC})	$\gamma_{ m NOC}$	-0.050767	-1.908 *

R² 0.8231 n 111

^{**} indicates significant at the 5% level and * indicates the 10% level.

The Metapopulation Model

$$Size_{j,a} = L_{\infty}^{j} \left(-e^{-k_{j}a} \right)$$

$$A_{j,a} = \begin{cases} A_{j,a} e^{-m_j} & \text{if } Size_{j,a} < L_{lim it} \\ A_{j,a} e^{-m_j - f_j} & \text{if } Size_{j,a} > L_{lim it} \end{cases}$$

$$C = \sum_{j=0}^{10} \sum_{a=0}^{360} \frac{f}{m + f} (1 - e^{-f_j + m_j}) w Size_{j,a}^b A_{j,a}, \forall Size_{j,a} > L_{\lim it}$$

$$e_{j} = \sum_{a=0}^{a=360} \alpha x^{\beta} A_{j,a} \qquad \text{where} \quad x = \begin{cases} Size_{j,a} & \text{if } Size_{j,a} > L_{maturity} \\ 0 & \text{if } Size_{j,a} < L_{maturity} \end{cases}$$

$$\mathbf{s}^{in} = p\mathbf{D}\mathbf{e}$$

$$S_{j}^{out} = \frac{S_{j}^{in}}{a^{-1} + c^{-1}S_{j}^{in}}$$

The Bioeconomic Link

$$f_{jt} = (Trips_{jt})hq = (o_t \sum_{p=1}^{4} d_p p_{pjt})hq)$$

Calibration of Bioeconomic Simulation Model

Appendix B

Biological Parameter Values

Parameter Values for Biological Model

From Botsford et al. (1993, 1994, 1999); Morgan (1997) and Morgan et al. (2000)

Parameter	Description	Value
k	growth	0.24
m	natural mortality	0.09
Linf	terminal size (mm)	118
Llimit	min. size limit (mm)	89
Lmature	min. size of sexually mature organism	60
f	fishing mortality	0.29
W	1st allometric weighting parm.	0.001413
b	2nd allometric weighting parm.	2.68
α	1st egg production parm.	5.47E-06
β	2nd eggs production parm.	3.45
p	survival probability	1.0
a	resiliency settlement parm.	0.005 - 0.05
c	carrying capacity settlement parm.	1.2E+07 - 2.4E+07

Appendix C

Details on the economic and biological literature

Summary of Key Biological Articles

A	rticle	Year	Citation Count	Modeling or Empirical	Pre- and Post-Reserve Effort Assumptions
Dugan and	Davis	1993	74	Discussion	none
Polacheck		1990	49	Modeling	fixed total effort and uniform redistribution
Carr and R	eed	1993	48	Modeling	constant harvest - no behavior
DeMartini		1993	45	Modeling	fixed total effort and uniform redistribution
Lauck et al	l.	1998	41	Modeling	random harvest fraction.
Russ and A	Alcala	1996	39	Empirical	N/A
Quinn et al	l.	1993	38	Modeling	fixed total effort and uniform redistribution, fishers give up at very low densities
Man et al.		1995	34	Modeling	fixed total effort and uniform redistribution
Bohnsack		1993	30	Discussion	N/A
Hastings a	nd Botsford	1999	14	Modeling	fixed harvest fraction

Economics Articles on Reserves

- Holland and Brazee (1996)
- Brown and Roughgarden (1997)
- Hanesson (1998)
- Sanchirico and Wilen (1999, 2001)
- Wilen, Smith, Lockwood and Botsford (2002)
- Smith (2002a, 2002b)
- Smith and Wilen (2002a, 2002b)